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Abstract

The cancellation of ventricular activity (VA) from atrial

electrogram (AEG) is commonly performed by template

matching and subtraction (TMS): a running template, built

by adaptive averaging of AEG segments in correspondence

of QRS, is subtracted from AEG to uncover atrial activ-

ity (AA). In our approach, before subtraction, templates

are modulated by a set of coefficients which are estimated

by maximizing, via Multiple Particle Swarm Optimization

(MPSO), a fitness function based on: 1) the energy of

the estimated and measured AA; 2) the first derivative of

the estimated and measured AA; 3) the similarity between

the template and its modulated version. To validate the

method, three datasets of 500 synthetic AEG were built.

Each signal included background AA, localized AA and

VA. We observed that TMS+MPSO provided better per-

formances then TMS alone when the ratio of VA/AA am-

plitude is large (VA/AA ≥ 3), while the performances get

closer when the ratio decreases.

1. Introduction

Atrial fibrillation (AF), the most common arrhythmia

encountered in the clinical practice, is characterized by a

highly irregular atrial activity. The level of irregularity de-

pends on the number of circulating wavefronts in the atria

and its quantification can be used to classify AF events

(from type–I to type–III according to Wells’ classes [1]),

to predict spontanuoes termination of AF or the response

to ablation therapy [2].

To assess the levels of AA organization, several sig-

nal processing methods were developed in the last years

including nonlinear, spectral and morphological analyses

[3]. Regardless of the method used, in most cases the first

processing step is the cancellation of ventricular activity

superimposed to the atrial one. This cancellation is com-

monly performed by means of template matching and sub-

traction (TMS). While the template might be fixed, better

results are obtained by adapting it over time, i.e. building

a running template by adaptive averaging AEG segments,

taken in correspondence of QRS complexes on a concur-

rent surface ECG recording [4]. Apart from how it is built,

the template is then simply subtracted from the endocardial

recordings. The method is simple and mostly effective but

there are situations in which an appropriate cancellation is

not achieved and the residuals may corrupt the successive

analysis. To overcome this problem, before subtracting it

from the AEG, we propose to modulate the template by a

set of coefficients, estimated via Multiple Particle Swarm

Optimization (MPSO) [5].

2. Methods

In the following, AEGs recorded during AF are modeled

as

s(n) = a(n) + v(n) + b(n) (1)

where v(n) is the VA, a(n) describes localized AA and

b(n) is the background, wide–band AA. During AF, a(n)
and v(n) may overlap in time and thus cancellation of v(n)
is required to uncover the atrial components. In the tra-

ditional template matching and subtraction method, the

template t(n) is built by adaptive averaging of electro-

gram segments taken in correspondence of QRSs on sur-

face ECG. The running template is then subtracted from

the electrogram s(n). The resulting quantity

r(n) = s(n) − t(n) = a(n) + b(n) + [v(n) − t(n)]

is called residue and will contain atrial contributions only

when t(n) ≈ v(n), i.e., when the template is a good esti-

mator of the VA.

In our approach, instead of subtracting t(n), we used a

modulated version of it. If we indicate the template shape

by t = [t(1), t(2), ..., t(N)]
T

, beingN the number of sam-

ples, our estimator of the VA becomes

v̂ = Wt,

where the diagonal matrix W is the weighting (modulat-

ing) matrix, whose elements need to be estimated at each

beat, as described in the next section.
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Figure 1. Example of simulated data (d) given as the sum of (a) background AA, (b) VA and (c) localized AA.

2.1. Particle Swarm Algorithm (PSO)

PSO is an iterative computational method able to solve

optimization problems. The idea behind the algorithm is

simple: a swarm of particles (representing the problem’s

solutions) is moved within a search area to find the opti-

mal spot (solution to a given problem). At each iteration

step, with M particles, M potential solutions are obtained

and, among them, the best one is selected (i.e., the one

which maximizes a predefined, problem–specific fitness

function). These solutions identify positions in the search

space which will be transformed into basins of attraction

that will guide the movement of particles in successive it-

eration. The process is repeated until a stop criterion is

reached.

The law which governs the movement of particles is the

most important part of the algorithm. Three factors are

usually considered: i) inertia, ii) local movements and iii)

global movements. Formally,

zi(k) = ωzi(k− 1) +ψpρp[li − yi(k)] +ψgρg[g− yi(k)]

where zi(k) is the vector of velocity of the i-th particle at

the k-th iteration, yi(k + 1) = yi(k) + zi(k) is the new

position of the i-th particle, li is the local optimum of i-th

particle, g is the global optimum, ρp and ρg are random

numbers extract from a uniform distribution.

The values of the coefficients ω, ψp and ψg govern the

behavior of the algorithm in term of convergence and sta-

bility. Low values provide a secure local or global solution,

but a small search space is spammed. Instead, higher val-

ues of the coefficients allow to enlarge the search space.

There is not a unique strategy for setting these parameters.

In our work, ω decreased linearly with each iteration from

a value of 0.9 to 0.1, while ψp = ψg = 2 were kept fixed.

The algorithm used in this work is an extension of PSO

and is typically termed Multiple Particle Swarm Optimiza-

tion. In MPSO a multi-initialization with N concurrent

swarms is employed. Also, the search space is enlarged by

exchanging particles between swarms after a fixed number

of iterations (the worst solution is traded for the best one of

another swarm). The extra parameters which need to be set

are the topology of the set of swarms, the number of par-

ticle exchanged across them and the number of iterations

before swaps of particles. In here we selected a ring topol-

ogy with 10 swarms of 12 particles each. Swarms were

initialized into a hypersphere of center equal to 1. Every

10 iterations, 5 particles were exchanged from a swarm to

another.

2.1.1. The Fitness Function

The core of PSO is the fitness function J which is maxi-

mized at each step. In this paper, it has been tailored on the

characteristics of the signal. At each beat it was computed

as the sum of three terms

J = αJ1 + βJ2 − (α+ β)J3, (2)

where J1 depends on the energy of the residue, J2 is a

function of the mean absolute first derivative of estimated

and measured AA and J3 quantifies the distance between

the template and its modulated version. The positive con-

stants in (2) were empirically set to α = 4 and β = 1, after

some tests on a train dataset.

In details, J1 quantify how much the the energy of the

residual signal matches that of the AEG when no VA is

present. It is defined as

J1 =
1

1 + exp (σr − θσa)
, (3)

where σr is the standard deviation of the residue and σa is

the standard deviation of the AA (in practise computed on
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Figure 2. Example of cancellation of VA from an AEG,

using (a) TMS or (b) TMS+MPSO. Occurrences of VA are

identified by black dots. See text for details.

the portion of AEG recording immediately preceding the

VA to be canceled). The quantity in (3) is monotonically

decreasing and penalizes solutions in which σr > θσa,

which usually happens when some components of VA re-

mained in r(n). The additional parameter θ is added for

generalization and it is used to consider only a fraction of

the total energy of AA in the computation of the fitness.

J2 has a similar design, but it quantifies the discrepancy

in the derivatives of the the signals. It was defined as:

J2 =
1

1 + exp (mr −ma)
, (4)

where

mx =
1

N

N∑

1

|x(n) − x(n− 1)
︸ ︷︷ ︸

≈ x′(n)

|,

being x either r(n) or a(n). The term (4) penalizes solu-

tions in which the mean value of the absolute first deriva-

tive of the residue is larger than that of AA. Therefore

it tends to discharge solutions in which high–frequency,

high–amplitude oscillations remain in the residue.

Finally, J3 is used to constrain v̂ to remain close to t.

We quantified the distance between v̂ and t as

d =
1

π
arccos

(
tT v̂

‖t‖‖v‖

)

and thus 0 ≤ d ≤ 1 and, when v̂ and t have similar shapes,

d ≈ 0. The term J3 is then defined as

J3 = Θ(d− θd),

where Θ is the Heaviside step function. Therefore the

threshold θd defines the maximum acceptable distance

from the template. Note that the particular arrangement

of coefficients in equation (2) renders the selection of so-

lutions for which J3 = 1 very unlikely.

2.2. Data simulation

To evaluate the performance of the method, simulated

signals were built according to the model (1), as described

in the following sections.

2.2.1. Atrial activity

Two AA components are considered in the model: back-

ground and localized components. The background AA

signal was obtained using the autoregressive model

b(n) =

p
∑

k=1

akb(n− k) + w(n)

where the model order p, model coefficients ak and the

properties of the white noise process w(n) ∼ N(0, σ2)
were derived by fitting a set of real AEG signals and deriv-

ing an average model.

To simulate localized AA, the activation of atria fibers

was approximated by a current dipole, p, moving along a

straight line. The potential generated by this dipole in a

uniform infinite medium (with conductivity σ) is

φ =
p · ar

4πσr2
(5)

where ar is the unit vector directed from the source point

to the field point and r is the distance between these two

points. We hypothesized that dipole is constant in its phys-

ical properties (amplitude, direction and versus) and moves

in the medium at constant velocity passing by the record-

ing electrode. The resulting localized AA’s are shown in

Fig.1 (c): a biphasic shape is obtained as those observed

when propagation wavefronts pass by an exploring elec-

trode.

2.2.2. Ventricular activity

To build the VA, both the occurrence and the morphol-

ogy of the wave had to be simulated.

To determine the occurrence of each QRS, we consid-

ered that the timing of ventricular activation is approxi-

mately erratic during AF. While the ventricular rate (fv) is

in the range 100-200 bpm, the beat–to–beat variability is

very pronounced. Therefore, in our simulations, the posi-

tion of the ith QRS was given by

pQRS(i) = if−1
v + wi + p0

QRS (6)
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Figure 3. Histograms of the correlation coefficients be-

tween simulated AA and r(t), obtained after VA cancella-

tion, using (a) TMS or (b) TMS+MPSO.

where wi is a white noise process used to model the er-

ratic QRS occurrences and where p0
QRS is a constant term

defining the position of the first QRS.

The ventricular morphology is obtained as the sum of

potentials generated by a pair of dipoles. Two dipoles were

used to create a double peaked VA, as sometimes observed

in real recordings. The contribute of each dipole is com-

puted using (5) and then composed to create the VA.

2.2.3. Composition of the synthetic AEG

The amplitude of the background atrial activity b(n) was

tuned to obtain a fixed ratio between the amplitude of the

localized AA and the standard deviation of the background

AA itself. This ratio was set to 4.

In assembling the various terms in equation (1), we took

into account the fact that AA and VA may have different

amplitudes. We therefore explored three distinct cases in

which VA/AA (i.e., the ratio between ventricular and atrial

amplitudes) was equal to 3, 4 or 5 respectively. For each

case a set of 500 simulated AEG was created. An example

of simulated data is shown in Fig.1(d).

3. Results

Fig.2 shows the cancellation of VA from a simulated

AEG. A clear residual is still present when TMS is

employed (see ellipses in Fig.2(b)). Conversely, using

TMS+MPSO (Fig.2(c)), no significant remainder of VA

is observed. The same happened for all the 500 synthetic

records. To quantitatively compare the performances of the

two methods, the correlation between the simulated AA

and r(t), obtained after VA cancellation, was estimated.

Fig.3 shows the histograms of the correlation coefficients

obtained on all the records. The histogram in Fig.3(b)

is right-shifted compared to that in Fig.3(a): on average,

higher correlations are obtained using TMS+MPSO.

Table 1. Mean±standard deviation (SD) of the correlation

coefficients between simulated AA and r(t), obtained af-

ter VA cancellation. (∗): mean values significantly higher

for TMS+MPSO (p < 0.05, t-test). (§): SD values signifi-

cantly smaller for TMS+MPSO (p < 0.05, F-test).

VA/AA TMS TMS+MPSO

3 0.905 ± 0.029 0.911∗ ± 0.025§

4 0.872 ± 0.039 0.894∗ ± 0.031§

5 0.836 ± 0.049 0.877∗ ± 0.036§

Table 1 shows the same correlation coefficients but for

different values of the ratio VA/AA. The mean values are

always significantly larger using TMS+MPSO, and the

corresponding standard deviations smaller, implying that

the signals obtained are closer to the original ones, leading

to more reliable results.

4. Conclusions

Cancellation of VA in AEG is the very first step for

many different further analyses. To improve this cancel-

lation, we proposed a modulation of the template obtained

via TMS by a set of coefficients estimated using MPSO.

The results showed an improvement in the estimates of

AA: the correlation coefficients between the residue and

the simulated AA increased and the standard deviations

decreased.
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